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Outline

§ EM for the mixture of Gaussians
§ Jensen’s inequality
§ General EM algorithms



Intuition

§ Recall that in supervised learning, we are given the training set 
without labels

§ We can assume these data are from different underlying classes 
𝑗 = 1,2, … , 𝑘

§ Each class is modeled by a Gaussian
§ The class label follows a multinomial distribution

§ Each data can only belong to one of these classes
§ Distribution parameter 𝜙 with 𝜙! ≥ 0 and ∑!𝜙! = 1



Illustration

https://roboticsknowledgebase.com/wiki/math/gaussian-process-gaussian-mixture-model/



Mixture of gaussian models

§ Each data 𝑥! corresponds to a (latent) class label 𝑧!

§ 𝑧!~Multinomial(𝜙), with 𝜙" ≥ 0 and ∑"𝜙" = 1
§ ℙ 𝑧" = 𝑗 = 𝜙!

§ 𝑥!| 𝑧! = 𝑗 ~



Maximum likelihood

§ Log-likelihood

§ Zero the derivatives of this formula, but challenging to find the 
closed-form solution



Relaxation: If we know the class label

§ The log-likelihood becomes

Lecture 5: GDA



Relaxation: If we know the class label (cont’d)

§ The log-likelihood becomes

§ Zero the derivatives and get



How to solve with unknown 𝑧/?
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Iterative algorithm to update 𝑧/

§ Repeat until converge
§ Guess the value of 𝑧": compute the posterior probability

§ Based on 𝑧", use maximum likelihood to estimate parameters



Iterative algorithm to update 𝑧/

§ Repeat until converge
§ Guess the value of 𝑧": compute the posterior probability
§ Based on 𝑧", use maximum likelihood to estimate parameters

Comparison 
with existing 

forms?



Expectation-Maximization

§ Repeat until converge
§ Guess the value of 𝑧": compute the posterior probability

§ Based on 𝑧", use maximum likelihood to estimate parameters Step M

Step E



Tool: Jensen’s inequality
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Convex functions

§ Definition (convex functions)
§ f is a convex function if f’’(x) ≥ 0 (for all x ∈ R)
§ f is a strictly convex function if f’’(x) > 0 (for all x ∈ R)

§ If taking vector-valued inputs, f is a convex function if its hessian H is 
positive semi-definite



Jensen’s inequality

§



Concave functions

§ Definition (concave functions)
§ f is [strictly] concave if and only if −f is [strictly] convex (i.e., f’’(x) ≤ 0 or 

H ≤ 0).

§ Jensen’s inequality also holds for concave functions f with E[f(X)] ≤ f(EX)



General EM algorithms
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Setting

§ Recall we have the training set
§ We have a latent variable model 

§ Hope to maximize the likelihood



Intuition

§ Directly optimizing the likelihood is infeasible

§ How about optimizing the lower bound of the likelihood?
§ Construct a lower bound – Step E
§ Optimizing the lower bound – Step M 



Lower bound of the likelihood

§ Hope to derive the lower bound for

§ 𝑄 is any 
distribution on 𝑧
with 𝑄 𝑧 ≥ 0 and 
∑!𝑄 𝑧 = 1

Jensen’s inequality



Choice of Q

§ For any distribution Q, we have the lower bound

§ How to choose Q?
§ Try to make the lower-bound tight at that value of 𝜃
§ Hope the inequality hold with equality

How?



Choice of Q (cont’d)

§ Hope the inequality hold with equality

§ Recall that in the Jensen’s inequality, the equality holds when X is 
a constant
§ To make                    be a constant, let 

§ Since ∑#𝑄 𝑧 = 1, it follows that

How?



Verify the equality with        

§

Evidence 
lower bound

(ELBO)



EM algorithm procedure

§ Foundation

§ Procedure of EM
§ Setting Q(z) = p(z|x; θ) so that ELBO(x; Q, θ) = log p(x; θ)
§ Maximizing ELBO(x; Q, θ) w.r.t θ while fixing the choice of Q



Generalization to multiple training data

§

§ The equality holds with  



Formal procedure of EM

§



Convergence analysis

§ Objective: prove

§ Proof

Jensen’s inequality

Updating rule

Selection of Q



Formal procedure of EM (cont’d)

§ When the change between 
𝜃"#$ and 𝜃" is small enough 



Other interpretation of EM/ELBO
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EM=alternating maximization on ELBO(Q, θ)

§ Define ELBO(Q, θ)

§ E step: maximizes ELBO(Q, θ) with respect to Q
§ M step: maximizes ELBO(Q, θ) with respect to θ

Hint: show that



§ Rewrite ELBO:

§ The second term does not depend on 𝜃, so maximizing ELBO over θ is 
equivalent to maximizing the first term

§ Corresponds to maximizing the conditional likelihood of x conditioned on z

KL-divergence form of ELBO



Back to Mixture of Gaussians
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Mixture of Gaussians

§ Recall the iterative optimization algorithm for Mixture of Gaussians

§ Repeat until converge
§ Guess the value of 𝑧": compute the posterior probability

§ Based on 𝑧", use maximum likelihood to estimate parameters



Applying general EM to Mixture of Gaussians 

§ Step E: compute the posterior probability

§ Step M: maximize



Solve 𝜇

§ Zero the derivative



Solve 𝜙

§ Terms related to 𝜙:

§ Additional constraint: ∑"𝜙" = 1

§ Construct the Lagrangian

§ Zero the derivatives and get

§ Using the constraint and get  



Summary

§ EM for the mixture of Gaussians
§ Jensen’s inequality
§ General EM algorithms

§ ELBO
§ Different interpretations



Extension to high dimensional latent variables

§ Variational auto-encoder (VAE)
§ A widely-known generative model
§ Foundations for GAN and diffusion models

§ Different from Gaussian mixtures, now consider that

§ 𝜃 is the collection of the weights of a neural network
§ g(z; θ) maps z ∈ 𝑅$ to 𝑅%

§ Challenging to compute the exact posterior distribution

Solution: find the 
approximation



Extension to high dimensional latent variables

§ Optimizing ELBO over a pre-defined class Q

§ Common assumption over Q: mean field assumption
§ 𝑄"(𝑧) gives a distribution with independent coordinates

Chosen as neural networks
Referred to as the encoder: encodes the 
data into latent code

What is the 
decoder?



Optimize ELBO

§ Evaluate ELBO:

§ Optimizing ELBO:
§ Run gradient ascent over φ, ψ, θ

Sample multiple data to approximate re-
parameterization 

trick to solve


