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Outline

= EM for the mixture of Gaussians
" Jensen’s inequality
" General EM algorithms



Intuition

» Recall that in supervised learning, we are given the training set

without labels
(2O, . ™)

" We can assume these data are from different underlying classes
=12, ..,k

= Each class is modeled by a Gaussian N (u;, %)

" The class label follows a multinomial distribution

* Each data can only belong to one of these classes
= Distribution parameter ¢ with ¢; = 0 and Z]- $; =1



Illustration

ot |

https://roboticsknowledgebase.com/wiki/math/gaussian-process-gaussian-mixture-model/



Mixture of gaussian models

= Each data x! corresponds to a (latent) class label z*
= z'~Multinomial(¢), with ¢; = 0and ¥, ¢; = 1

" P(z' =) = ¢,
" x'|z' =]~ Ny, %)



Maximum likelihood

" |og-likelihood
U, 1, %) = Z log p(z”; ¢, 1, %)

Zlog Z p(z@|29; p, D)p(2?; ¢)

2(1)=1

m Zero the derivatives of this formula, but challenging to find the
closed-form solution



Relaxation: If we know the class label

" The log-likelihood becomes

¢, 1, %) = ) logp(z?|29; i, %) + log p(217; ¢)

=1

How to estimate the parameters?

= The parameters are @, %, Lo and p; (Usually assume common %)
* The log-likelihood function for the joint distribution

U, po; p1,X) = log | p(e®,y®; ¢, o, p1, X)

= log | [ p(=®1y"?; o, pr, £)p(y™; ¢).

Lecture 5: GDA



Relaxation: If we know the class label (cont’d)

" The log-likelihood becomes
¢, 1, %) = ) logp(z?|29; i, %) + log p(217; ¢)
1=1

" Zero the derivatives and get

¢; = —Zl{z(@)—

o ZiZl ]_{Z(Z) — ]}x(?’)
_ i {2 =5 — ) (@Y — )"
Z?:l 1{2(2) =7}




How to solve with unknown z!?



lterative algorithm to update z'

" Repeat until converge

= Guess the value of z!: compute the posterior probability

p(z¥]2 = j; u, D)p(2" = j; ¢)

(z) _ (i) __ .CC(Z)
= P =gl o X) = S, p(x®@]20 = 1; pu, D)p(2® = 1; ¢)

= Based on z!, use maximum likelihood to estimate parameters



lterative algorithm to update z'

" Repeat until converge

= Guess the value of z!: compute the posterior probability

» Based on z', use maximum likelihood to estimate parameters

l ~—
o = > ouf,
=1

7: .
Z:‘L:l wj(- )x(z) Comparison
Hi = N, with existing
Zn ’LU(-Z) forms?
1=1 "7y '




Expectation-Maximization

" Repeat until converge

» Guess the value of z!: compute the posterior probability Step E

= Based on z!, use maximum likelihood to estimate parameters Step M



Tool: Jensen’s inequality
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Convex functions

= Definition (convex functions)
= fis a convex function if f’(x) 2 O (for all x € R)

» fis a strictly convex function if f”(x) > O (for all x € R)

" |f taking vector-valued inputs, f is a convex function if its hessian H is
positive semi-definite



Jensen’s inequality

m Theorem. Let f be a convex function, and let X be a random variable.
Then:
E[f(X)] > f(EX).

Moreover, if f is strictly convex, then E[f(X)] = f(EX) holds true if and
only if X = E[X]| with probability 1 (i.e., if X is a constant).

f(a)
E[f(X)]

f(b)
f(EX)




Concave functions

= Definition (concave functions)

= fis [strictly] concave if and only if —f is [strictly] convex (i.e., f’(x) <0 or
H <0).

" Jensen’s inequality also holds for concave functions f with E[f(X)] < f(EX)



General EM algorithms
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Setting

= Recall we have the training set {z®), ..., z(™}
= We have a latent variable model p(z, z; 0)

" Hope to maximize the likelihood

Z log p(z'?; )
i=1

£(6)

> Jlog > p(a,29;0) «— pla;0) =3 plz,20)
1=1 2

z(1)



Intuition

" Directly optimizing the likelihood is infeasible

" How about optimizing the lower bound of the likelihood?
= Construct a lower bound —Step E

" Optimizing the lower bound — Step M



Lower bound of the likelihood

" Hope to derive the lower bound for
log p(x;0) logprz

]
—
o
o3
g
VR
3
R
D
N—r"

Q is any
distribution on z

z ( 9) with Q(z) = 0 and
D\T, 2, 2:0(2)=1
— 1ogZQ(z) Q(z)/

Jensen’s inequality «=——— Z Z Q(Z) 10g

" log p(x; 0)




Choice of Q

" For any distribution Q, we have the lower bound

og(z:0) > 320 10g 2550

= How to choose Q7

" Try to make the lower-bound tight at that value of 6
=" Hope the inequality hold with equality

How?



Choice of Q (cont’d)

" Hope the inequality hold with equality

How?

= Recall that in the Jensen’s inequality, the equality holds when X is
a constant

= To make p(g(z;)O) be a constant, let Q(2) x p(x, z;60)
. . p(z, 2; 0)
= Since Y., Q(z) = 1, it follows that Q(z) = S (7. 2:0)
_ plz,%0)
-~ p(z;0)

= p(z|z;0)



Verify the equality with Q(2) = p(z|z;0)

. p(x, z;0) p(x, z;0)
EZ:Q(Z) log =773 Zp 2|; 0) log © (z|x %
,0)p(@

Evidence
lower bound

(EL80) =Y p(z|z;0)logp(; 6)
= logp(z;0) Y _plz|z;0)

= log p(z; 0) (because ) p(z|z;0) =1)



EM algorithm procedure

" Foundation
VQ,0,z, logp(xz;0) > ELBO(z;Q,0)
" Procedure of EM
= Setting Q(z) = p(z|x; ©) so that ELBO(x; Q, 8) = log p(x; 9)
= Maximizing ELBO(x; Q, 6) w.r.t 6 while fixing the choice of Q



Generalization to multiple training data
= {(6) > ) ELBO(z";Q;,0)

| p(x(i)7 ALK 0)
= Q;(z) 1o .
2.2 AT (6

= The equality holds with Q;(2Y) = p(z?|z?;9)



Formal procedure of EM

Repeat until convergence {

(E-step) For each 1, set
Qi(2%) := p(2?]2;9).

(M-step) Set

0 —argmaXZELBO (29;Qs,0)

(z®, 2, )
. (z) :C y 207
= argmax E E Qi(z log E0)

) z()



Convergence analysis

= Objective: prove £() < £(1+1)

= Proof o
£(0“V) > > "ELBO(z®; Qi 0(+V)

/ 1=1
> "ELBO(z; @[, 6%
2

~=H

Jensen’s inequality

Updating rule

g(t))

Selection of Q



Formal procedure of EM (cont’d)

When the change between

Repeat until convergence -f
P & L 0t*t1 and 8¢ is small enough

(E-step) For each 1, set
Qi(29) = p(z|; )

(M-step) Set

0 —argmaXZELBO (29;Qs,0)

(z®, 2, )
— (’L) CC y 20
= argmax E E Qi(z log E0)

’i z('L



Other interpretation of EM/ELBO
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EM=alternating maximization on ELBO(Q, 6)

= Define ELBO(Q, 9)

i i p(x(i)7 Z(i)S 9)
ELBO(Q, ) ZELBO .0, )—S:S:Qi(z())log 0.

[/ z(z)

" E step: maximizes ELBO(Q, 0) with respect to Q
= M step: maximizes ELBO(Q, ©) with respect to 0

Hint: show that
ELBO(z;Q,0) = Y, Q(z)log B&22
=log p(z) — Dkr(Q||p2z)



KL-divergence form of ELBO

= Rewrite ELBO:
| B p(z,2;0)
ELBO(z;Q,0) = >, Q(2)log 224

= E,ollogp(x, 2;0)] — E,.qllog Q(2)]
= E.qllog p(z|2;0)] — Dk (Q|p-)

Dr1(Q||p2) ZQ ) log ZZ))

" The second term does not depend on 6, so maximizing ELBO over 0 is
equivalent to maximizing the first term

= Corresponds to maximizing the conditional likelihood of x conditioned on z



Back to Mixture of Gaussians
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Mixture of Gaussians

= Recall the iterative optimization algorithm for Mixture of Gaussians

" Repeat until converge

= Guess the value of z!: compute the posterior probability

, N p(x® |2 = j; u, L)p(z® = j; @)
w? = p(z" = jlzW; ¢, u, ) = —; — ,
S p(x®]20) =15 4, Y)p(200 = 1; ¢)

= Based on z!, use maximum likelihood to estimate parameters




Applying general EM to Mixture of Gaussians

= Step E: compute the posterior probability
wf) = Qu(=? = j) = P(?) = jla; 6,1, )

= Step M: maximize

n | (0) L0). § 4 %
35 0, g P T)

i=1 (i) Qi(z(z))
=) > Qi(2" = j)log P20 = jin, Z)p.(Z( = 3i9)
i=1 j=1 Qi(z® = j)
. (4) (27r)d/21|§3j|1/2 EXp (_%(x(i) - Nj)TZj_l(x(i) — Mj)) oy
-3 ol
i=1 j=1 w;



Solve u

= 7ero the derivative

" & . oy e (3@ — ) TR (2 — ) -
730> ul o
i=1 j=1 )
- _szzw (2 — 1) "5 (2 — py)
=1 j5=1
- _Zwl()vuzQU 2 e — 2
1=1

Z?ﬂ wl( R0

— Z’w() E 1;5'(2) El_llu'l) Wy o= - B

D im1 Wy



Solve ¢

n k
Terms related to ¢: Y _ > w}’ log ¢;

i=1 j=1

Additional constraint: 2,;¢; = 1

n

Construct the Lagrangian £

=

IO
Zero the derivatives ic Z
8¢J -1 ¢.7

+4 andget ¢, =

Using the constraint and get ¢i = Zw§i)
=1

k
> " wi log ¢; + B( Z%—l
1 7=1

2

n
1=1

()
J

—p



Summary

= EM for the mixture of Gaussians
" Jensen’s inequality

" General EM algorithms
= ELBO

= Different interpretations



Extension to high dimensional latent variables

" Variational auto-encoder (VAE)
= A widely-known generative model

= Foundations for GAN and diffusion models

= Different from Gaussian mixtures, now consider that
< Y N(O, Ikxk)
zlz ~ N(9(2;0),0°Lixa)

. . . Solution: find the
= §is the collection of the weights of a neural network approximation

=" g(z; ) maps z € R to R4
= Challenging to compute the exact posterior distribution



Extension to high dimensional latent variables

" Optimizing ELBO over a pre-defined class Q

maxmax ELBO(Q, 0)

= Common assumption over Q: mean field assumption

" (;(z) gives a distribution with independent coordinates

Qi = N (q(z"; ¢), diag(v(z"”; v))?)

What is the

decoder?
Chosen as neural networks

Referred to as the encoder: encodes the
data into latent code



Optimize ELBO

= Fvaluate ELBO:

p(zD, 29;0)
ELBO ¢ TP, ZEz( )NQ llog Qz(z(z)) )

Where Q; = N( (x (@). S D), diag(’v(fﬂ(i); ¥))?)
|

Sample multiple data to approximate

re-
parameterization
trick to solve

= Optimizing ELBO:
" Run gradient ascent over ¢, |, 0 0 := 0 +nVyELBO(¢, ¥, 0)
¢ = ¢ +nV4,ELBO(¢,,0)
Y =Y +nV,ELBO(¢,,0)



